Studien zum Raman-Effekt.

Mitteilung 170: Benzolderivate XXVII (Para-Derivate, Ergänzung).

Von

E. Herz, K. W. F. Kohlrausch, w. M. d. österr. Ak. d. Wiss., und R. Vogel.

281. Mitteilung aus dem Physikalischen Institut der Techn. Hochschule Graz.

Mit 4 Abbildungen.

(Eingelangt am 10. Jan. 1946. Vorgelegt in der Sitzung am 10. Jan. 1946.)

In der XII.¹ und XIII.² Mitteilung über die Ramanspektren der Benzolderivate wurde über Polarisationsmessungen an 18 para-Derivaten berichtet und, fußend auf deren Kenntnis, eine Analyse der Spektren durchgeführt. Im Vergleich zu dem in der Zwischenzeit neu bearbeiteten Mono-, Ortho-, Meta-Derivaten waren die para-Körper aber insofern noch benachteiligt, als bei ihnen Beobachtungen mit großer Dispersion fehlten. Zur Homogenisierung der experimentellen Grundlagen wurde diese Lücke für 15 Beispiele ausgefüllt; die Zahlenergebnisse sind im Anhang zusammengestellt. Im übrigen können die para-Derivate als die derzeit bestuntersuchten gelten, da von über 100 Vertretern derselben die Ramanspektren bestimmt wurden; es wurde so eine ziemlich vollständige Systematik geschaffen, die sich auf die in p-Stellung mit

X = NH₂, OH, OCH₃, F, CH₃, Cl, Br, J

substituierten Monobenzole $C_6H_5 \cdot Y$ mit

 $Y = NH_2, OH, OCH_3, F, CH_3, Cl, Br, J, NO_2, CN, CO \cdot H, CO \cdot CH_3, CO \cdot OH, CO \cdot OCH_3, CO \cdot OC_2H_5, CO \cdot Cl$

bezieht und demnächst durch die weitere Reihe $X \cdot C_6H_4 \cdot CO \cdot NH_2$ ergänzt werden wird. Der Raummangel verbietet leider den Versuch,

¹O. Paulsen, S.-B. Akad. Wiss. Wien, Abt. IIb 147, 320 (1939); Mh. Chem. 72, 244 (1939).

² K. W. F. Kohlrausch und O. Paulsen, S.-B. Akad. Wiss. Wien, Abt. II b 147, 344 (1939); Mh. Chem. 72, 268 (1939).

E. Herz, K. W. F. Kohlrausch und R. Vogel: Studien zum Raman-Effekt. 201

durch eine graphische Darstellung des Gesamtmaterials dem Leser einen selbständigen Einblick in die überaus charakteristischen Regelmäßigkeiten der "para-Spektren" zu ermöglichen und ihn so zur Mitarbeit an der Aufklärung der theoretischen Zusammenhänge anzuregen.

Die neuerliche Beschäftigung mit diesem Gegenstande soll auch dazu benutzt werden, einige nachträglich bemerkte Versehen hinsichtlich Beobachtungsgrundlage und deren Auslegung zu verbessern, die spektrale Analyse an den später bei den anderen Derivaten gehandhabten Vorgang anzuschließen und dem mittlerweile erzielten Fortschritt im Verständnis Rechnung zu tragen.

Diskussion der Ergebnisse.

A. Die Verbesserung des Beobachtungsmaterials.

1. Bei Durchmusterung der früheren Beobachtungen wurde im Falle des p-Bromphenols³ ein Fehler in der Lagebestimmung einer Bezugslinie gefunden, der sich auf die folgenden Frequenzwerte auswirkt:

Statt: 1186 (3), 1276 (3b), 1348 (00), 1415 (00), 1511 (00), 1608 (5b), 1163 , 1252 , 1324 , 1390 , 1488 , 1586

2. Im p-Fluorjodbenzol sind die Linien 858 (2), 1105 (3), 1349 (9), 1576 (1) zu streichen; sie gehören zu einer Verunreinigung durch p-Fluornitrobenzol.

3. Die Beobachtungen mit großer Dispersion erbrachten in den meisten der behandelten Fälle den Nachweis über die Aufspaltung der v(CH)-Linie 3060 und der Linie $\omega_{7,8}$ um 1600 sowie über Linienverdopplungen in den folgenden p-Derivaten:

Fluortoluol, 1211 (6) + 1221 (6); Oxyanisol, 1166 (6) + 1182 (6); Bromanisol, 1168 (6) + 1179 (2); 1283 (3) + 1294 (3); 1438 (3) + 1452 (3); Dichlorbenzol, 327 (5) + 331 (12), 744 (3) + 747 (12), 1069 (8) + 1086 (8). Die letzterwähnte Aufspaltung wurde bereits von Swaine-Murray⁴ gefunden.

4. Die Einschaltung noch *nicht bearbeiteter Stoffe* in spektrale Übergänge von der Art der Abb. 2 und 3 gestattet mit hinreichender Sicherheit die Interpolation der Raman-aktiven Frequenzen des unbekannten Spektrums. Die nachstehenden auf diese Art für p-Difluorbenzol und p-Jodphenol ermittelten Frequenzen können gegebenenfalls von Nutzen sein:

 $\begin{array}{l} \mathrm{p-C_6H_4F_2:} \ \ \Delta v = 350 \ (m, \ dp); \ 400 \ (s, \ dp); \ 460 \ (st, \ p); \ 640 \ (m, \ dp); \\ 830 \ + \ 845 \ (st, \ p); \ 1160 \ (m, \ p); \ 1220 \ (st, \ p); \ 1310 \ (ss, \ dp); \ 1610 \ (st, \ dp); \\ 3050 \ + \ 3060 \ (st). \end{array}$

³ K. W. F. Kohlrausch und Gr. Prinz Ypsilanti, S.-B. Akad. Wiss. Wien, Abt. IIb 144, 417 (1935); Mh. Chem. 66, 285 (1935).

⁴ J. W. Swaine und J. W. Murray, J. chem. Physics 1, 512 (1933). Monatshefte für Chemie. Bd. 76/3-5.

 $\mathbf{14}$

p—J·C₆H₄·OH: $\Delta \nu = 250$ (st, p); 315 (m, dp); 410 (ss); 490 (ss); 625 (m); 690 (s, dp); 810 (sst, p) + 825 (m, dp); 1050 (m, p); 1160 (m, p); 1250 (m, p); 1300 (ss); 1490 (ss); 1585 (st); 3050 + 3060 (st).

5. Was die Absorptionsspektren anbelangt, deren genaue Kenntnis gerade im Falle der para-Spektren (Alternativ-Verbot bei symmetrischer Substitution) von Wert wäre, sind uns keinerlei Fortschritte seit 1937 Es ist verwunderlich, wie wenig Interesse dieses dankbare bekannt. Beobachtungsfeld bei den Ultrarot-Spektroskopikern findet. Die Lecomteschen Messungen⁵ entsprechen zwar der Breite nach allen Anforderungen, nicht aber nach der Tiefe: Sie erfassen meist nur das Frequenzgebiet 600 bis 1200 (seltener 500 bis 1300) und lassen an Auflösungsvermögen zu wünschen übrig; außerdem fehlen alle zahlenmäßigen Angaben betreffend Frequenz und Intensität (ersetzt durch graphische Wiedergabe) sowie betreffend Herkunft und Reinheitsgrad der Substanzen. Die an sich schon schwierige Lesbarkeit der Absorptionsspektren wird durch solche vermeidbare Mängel noch mehr beeinträchtigt. Auch ist die Übereinstimmung der Lecomteschen Ergebnisse mit den stichprobenweisen Messungen von Coblentz⁶ nicht sehr befriedigend. So kommt es, daß derzeit zusätzliche Erkenntnisse aus den Aussagen dieser an sich unentbehrlichen Methodik im vorliegenden Fall, so wie in vielen anderen Fällen mit vielatomigen Molekülen, nur in recht bescheidenem Ausmaß zu gewinnen sind. -- Verwiesen sei noch auf die Arbeiten von Barchewicz-Parodi,⁷ in denen über das Frequenzgebiet unter 530 cm⁻¹ berichtet wird; jedoch nur für einige Beispiele, so daß allgemeine Folgerungen kaum abzuleiten sind.

B. Der spektrale Übergang bei symmetrischer Substitution.

6. Der in der üblich gewordenen Darstellung beschriebene Symmetrieübergang $D_{6h} \rightarrow D_{2h} \rightarrow C_{2v}$ ist in Tabelle 1 enthalten. Einteilung, Zuordnung und Bezeichnung der Benzolschwingungen in der 1. Spalte entsprechen jener bei *Kohlrausch-Wittek*,⁸ wenn dort, entsprechend späteren Korrekturen, erstens die Schwingungsbilder für γ_2 und γ_3 (Abb. 1) und zweitens die Frequenzwerte für δ_1 und δ_2 miteinander vertauscht werden. Ultrarot ermittelte Frequenzen sind rund, unbeobachtbare und daher nur indirekt ermittelte Frequenzen sind eckig geklammert. In der zweiten Spalte sind die Symmetrieeigenschaften der zu D_{2h} gehörigen Schwingungsklassen durch Angabe des Verhaltens gegenüber den Symmetrieebenen $\sigma_x \sigma_y \sigma_z$ angeführt, wobei σ_x die CX-Bindungen enthält

⁵ J. Lecomte, J. Physique Radium 8, 489 (1937); 9, 13 (193 8).

⁶ W. W. Coblentz, Carnegie Inst. Washington. 1905.

⁷ P. Barchewicz und M. Parodi, J. Physique Radium 10, 143 (1939); C. R. Acad. Sci. Paris 212, 1138 (1941).

⁸ K. W. F. Kohlrausch und H. Wittek, S. B. Akad. Wiss. Wien, Abt. II b. **150**, 75 (1941); Mh. Chem. **74**, 1 (1941).

	D ₆ h: C ₆ H ₆	$\begin{array}{c c} D_{2h}:\\ p-C_6H_4.H_2' \end{array}$	$D_{2h}: p - C_6 H_4 X_2$	C _{2 v} : C ₆ H ₄ . X
$\begin{array}{c c} \mathbf{A_{1g}} \\ \mathbf{E_{g}^{+}} \end{array} \Big\{ \left \begin{array}{c} \end{array} \right.$	$ \begin{array}{rcl} \omega_4 &=& 992 ; & \nu_3 &=& 3063 \\ \omega_1 &=& 606 ; & \nu_6 &=& 3047 \\ \omega_7 &=& 1595 ; & \delta_3 &=& 1176 \end{array} $	$\left\{A_{1g} \mid \begin{array}{c} s, s, s \\ p, ia \end{array}\right\}$	$\begin{array}{c} 3 \omega + \omega \left(\mathbf{X} \right) \left(\omega_{13} \right) \\ \delta_3 \simeq 1176 \\ \nu_3 \simeq 3063 \end{array}$	$\begin{vmatrix} A_1; p, a \\ 5 \omega + \omega_{11} \end{vmatrix}$
	$ \begin{matrix} [\omega_3 = 1009; & v_4 = 3060 \\ (\omega_6 = 1485; & v_1 = 3080 \\ & (\delta_5 = 1037 \end{matrix}) $	$ \begin{array}{c} B_{2u} & s, as, s \\ B_{2u} & v, a \end{array} $	$ \begin{array}{l} 2\omega + \omega(\mathrm{X})(\omega_{11}) \\ \delta_5 \simeq 1037 \\ \nu_1 \simeq 3080 \end{array} $	$\left\{\begin{array}{c} \partial_3, \ \partial_5\\ \nu_1, \ \nu_3\end{array}\right\}$
	$ \begin{array}{rl} & & [\delta_1=1320\\ \omega_2=&606; \ \delta_4=1170\\ \omega_8=1595; \ v_5=3047 \end{array} $	$ \left. \begin{array}{c} B_{1g} \\ B_{1g} \\ B_{1g} \end{array} \right $ as, as, s dp, ia	$\begin{array}{c} 2\omega + \omega\left(\mathrm{X}\right) \left(\omega_{10}\right) \\ \delta_{1} \simeq 1320 \\ \nu_{5} \simeq 3047 \end{array}$	$ \begin{bmatrix} B_1; dp, a \\ 4\omega + \omega_{10} \end{bmatrix} $
	$ \begin{matrix} [\omega_9 \sim 1680? & \delta_2 = 1400 \\ (\omega_5 = 1485; & \delta_6 = 103) \\ (v_2 = 3080) \end{matrix} $	$\left.\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array}\right) \\ \end{array}\right\} B_{3u} \begin{array}{c} \begin{array}{c} \operatorname{as, s, s, }\\ \end{array}\\ v, a \end{array}$	$ \begin{array}{c} 2 \omega + \omega \left(\mathbf{X} \right) \left(\omega_{12} \right) \\ \delta_2 \simeq 1400 \\ v_2 \simeq 3080 \end{array} $	$\left \begin{array}{c} \delta_1, \ \delta_2\\ \mathbf{v}_2, \ \mathbf{v}_5\end{array}\right $
$\overline{\mathbf{A_{1}}_{u}}_{\mathbf{E}_{u}^{+}}$	$\Gamma_2 = 406; \gamma_5 = 690$	$\Big] \Big\} \mathbf{A}_{1u} \ \mathbf{x}, \ $	$\frac{\Gamma_2}{\gamma_5} \simeq 690$	A_2 ; dp, ia
$\begin{array}{c} \\ \mathbf{B_{1g}} \\ \mathbf{E_{g}}- \end{array}$	$\gamma_2 = 850$	$\left. \right\} B_{2g} as, s, as dp, ia \right.$	$\gamma_2 \simeq 850$	$\int \frac{\gamma_2}{\gamma_2, \gamma_5}$
$\begin{array}{c}\mathbf{A_{2u}}\\\mathbf{E_{u}^{+}}\end{array}$	$ \begin{array}{c} - & (\gamma_6 = 671) \\ [\Gamma_1 = 406; & \gamma_4 = 690 \end{array} $	$\left.\right\} B_{1u} \begin{array}{c} s, s, as \\ v, a \end{array}$	$\frac{\Gamma + \Gamma (\mathbf{X})(\Gamma_5)}{\gamma_4 \simeq 690}$	$ \begin{vmatrix} B_2; dp, a \\ 2\Gamma + \Gamma_4 \end{vmatrix} $
$\mathbf{B}_{2g} = \mathbf{E}_{g}^{-}$	$[\Gamma_3 = 500; \begin{array}{c} \gamma_1 = 780 \\ \gamma_3 = 850 \end{array}]$	$\left.\right\} B_{3g} \frac{s, as, as}{dp} ia$	$\frac{\Gamma + \Gamma (\mathbf{X}) (\Gamma_4)}{\gamma_3 \simeq 850}$	$\begin{vmatrix} & - & - & - & - & - & - & - & - & - & $

Tabelle 1. Symmetrieübergang: Benzol \rightarrow para-Derivat \rightarrow Radikal-

und σ_z die Molekülebene ist. — Beim Übergang vom p-gestörten C₆H₆ zum p-Derivat $C_6H_4X_2$ verwandeln sich je 2 γ , δ , ν -Schwingungen in Kettenschwingungen Γ und ω ; welche CH-Frequenzen es sind, die auf diese Art aus dem Spektrum als solche ausscheiden, hängt häufig von der Wahl der Frequenzwerte für die unbeobachtbaren CH-Schwingungen in Benzol ab. In dieser Hinsicht unterscheidet sich das Vorgehen hier von jenem bei Kohlrausch-Paulsen.² Wie weiters die neu auftretenden Kettenschwingungen $\omega(X)$ zu bezeichnen sind, hängt vom Frequenzübergang in das Radikal $C_{e}H_{4} \cdot X$ und von der dort gehandhabten Bezeichnung der ω (X)-Frequenzen ab. Auch in dieser Hinsicht besteht ein Unterschied gegen früher.² Werden im Monoderivat die ω (X)-Schwingungen der Klassen A₁, B₁, B₂ mit ω_{11} , ω_{10} , Γ_4 , die im p-Derivat X · C₆H₄ · Y in den gleichen Klassen zusätzlich auftretenden Kettenfrequenzen mit $\omega_{13}, \omega_{12}, \Gamma_5$ bezeichnet, dann ergeben Frequenzübergänge nach Art der nachfolgenden Abb. 3, daß ω (X) in A_{1g} mit ω_{13} , in B_{2u} mit ω_{11} , in B_{1g} mit ω_{10} , in B_{3u} mit ω_{12} , in B_{1u} mit Γ_5 , in B_{3g} mit Γ_4 zu bezeichnen sind. 7. Der Vergleich mit dem Modellspektrum⁹ ist in der Abb. 1 und 2

⁹ E. Herz und J. Wagner, Mh. Chem. 76, 93 (1946).

durchgeführt, in denen die Raman-aktiven Frequenzen als Funktion von $\sqrt{1/m}$ (X) eingetragen sind. Anzumerken ist, daß als Modell das para-System C_6X_2 mit m(X) = 1 bis $m(X) = \infty$ und mit konstanter Federkraft $f(C \cdot X)$ berechnet wurde, während die Beobachtung am Molekül $C_6H_4X_2$ mit zusätzlichen Methinschwingungen und variabler Federkraft f(CX) erfolgte; der letzteren Abnahme von $X = CH_3$ bis X = Jäußert sich in Abb. 2 durch stärkere Neigung der X-empfindlichen

Abb. 1. Berechneter Frequenzgang des Modells p-C₆X₂.

Frequenzkurven für ω_{10} , ω_1 , ω_4 . Anderseits ist aus der Identität der gerechneten und beobachteten Kurve für ω_{13} zu schließen, daß bei dieser Schwingung nur die Massen m (X) eine Rolle spielen, Federkräfte f (CX) jedoch kaum beteiligt sind; dies steht in Übereinstimmung mit der Schwingungsform des mechanischen Modells (vgl. Kohlrausch-Paulsen,² Abb. 1, dort noch mit ω_{11} bezeichnet), bei der die Massen der CX-Bindungen sich gleichsinnig bewegen, der Abstand CX somit nur wenig geändert wird.

In Abb. 2 wurden, um die Vergleichbarkeit nicht zu stören, die von der Modellrechnung nicht erfaßten Raman-aktiven Methinfrequenzen (Tabelle 1) γ_2 3 und $\delta_3 \delta_1$ nicht durch Übergangslinien verbunden. Die Angaben für p-C₆H₄D₂ stammen von Langseth-Lord.¹⁰ — Abgesehen von Mängeln in den Absolutwerten der Modellfrequenzen (vgl. insbesondere

¹⁰ A. Langseth und R. C. Lord, Medd. Danske Vidensk. Selsk. 16, 1 (1938).

 $\gamma_1 \rightarrow \Gamma_3$) ist die Übereinstimmung beider Abbildungen durchaus befriedigend.

Nicht eingetragen wurden in Abb. 2 die folgenden überzähligen Molekülfrequenzen:

Für X = D: 738 (1), 966 (1), 1167 (2), 2223 (0), 2261 (1).

Für X = CH₃: 698 (1) und die CH₃-Frequenzen 999 (1), 1376 (6), 144 $\binom{1}{2}$.

Abb. 2. Beobachteter Frequenzgang des Moleküls p-C₆H₄.X₂.

Für X = Cl.: 384 (0), 598 (0), 1069 (8 b) + 1086 (8), 1223 ($^{1}/_{2}$), 1379 (1), 1632 ($^{1}/_{2}$).

Für X = Br.: 1368 (1b).

Für X = J: 590 (00), 734 (0?), 925 (1), 1365 $\binom{1}{2}$, 1440 $\binom{1}{2}$.

Was im besonderen die Störung in Dichlorbenzol anbelangt, wo statt einer Frequenz $\omega_4 \sim 1090$ das Triplett 1069 (8)+1086 (8)+1205 (12) auftritt, so wird diese wohl auf *Fermi*-Resonanz zwischen ω_4 und den Kombinationstönen von $\omega_{13} = 327$ (5) + 331 (12) und $\omega_1 = 744$ (3) + +747 (12) — beidemal Isotopenaufspaltung — zurückzuführen sein. Im übrigen braucht auf das Vorhandensein schwacher überzähliger Linien kaum besonderes Gewicht gelegt zu werden, da mit Obertönen (z. B. 2 $\gamma_{4,5} \sim 1380$) und mit Durchbrechung der Auswahlregeln zu rechnen ist.

Zum Unterschied gegen früher² werden hier zwei der drei tiefsten Frequenzen anders zugeordnet: Zum Beispiel wird in $X = CH_3$ die

niederste Frequenz als Γ_4 (früher ω_{10}), die zweitniederste als ω_{10} (früher nicht zugeordnet) gedeutet; andernfalls nämlich ließe sich, worauf seinerzeit zu wenig geachtet wurde, der Übergang zum Radikal $C_6H_4 \cdot X$ nicht sinngemäß durchführen.

8. Bezüglich der Raman-inaktiven, aber ultrarot-aktiven Schwingungen der Klassen B_{1u} , B_{2u} , B_{3u} läßt sich aus dem vorhandenen Beobachtungsmaterial (vgl. Ziffer 5) kaum etwas ablesen. Eine auch nur angenähert so gute Übereinstimmung zwischen Erwartung und Befund wie in den Abb. 1 und 2 zu erreichen, scheint ganz unmöglich. Die einzige einigermaßen gesicherte Aussage, die nach den an den Raman-Spektren unsymmetrisch substituierter p-Derivate gemachten Erfahrungen vorauszusehen war, ist das Auftreten einer kräftigen Absorptionsfrequenz in unmittelbarer Nähe der zur Klasse A_{1g} gehörigen Linie ω_4 ; sie wurde schon seinerzeit mit ω_3 identifiziert:

X		CH_3	Cl	\mathbf{Br}	\mathbf{J}
ω_4 (A _{1g} ,	p, ia) 😑	1204 (8)	1105 (12)	1066 (12)	1045(8)
ω_3 (B _{2 u} ,	v, a) =	1195	1095	1074	1051

Das heißt, daß ω_4 und ω_3 bei symmetrischer Substitution zufällig entarten; eine empirische Feststellung, die für das spätere ("e, e'-Regel, Ziffer 10), von Wichtigkeit ist. Im Modell sind ω_3 und ω_4 merklich verschieden.

C. Der spektrale Übergang bei unsymmetrischer Substitution.

9. Der Übergang $C_6H_5 \cdot Y \rightarrow p \cdot X \cdot C_6H_4 \cdot Y \rightarrow C_6H_4 \cdot Y$ -Radikal wurde in der früheren Arbeit² für den Fall $p \cdot X \cdot C_6H_4 \cdot CH_3$ besprochen. Da sich nun infolge geänderter Zuordnung der tiefsten Frequenzen (Ziffer 7) (Vertauschung der Bezeichnungen von ω_{11} und ω_3 , verbesserte Annahmen betreffend der Lage der unbeobachtbaren Benzolfrequenzen) geringe Abweichungen ergeben, wird ein solcher Übergang nochmals an Hand der substituierten Chlorbenzole $p \cdot X \cdot C_6H_4 \cdot Cl$ in Abb. 3 ausgeführt. Das Zeichen v bei den Übergangslinien bedeutet, daß die betreffende Schwingung im symmetrischen p-Derivat verboten ist.

Zur Abb. 3 sei kurz bemerkt: Bezüglich der Analyse des als Grundlage dienenden Spektrums des Chlorbenzols — im Radikal $C_6H_4 \cdot Cl$ fehlen die CH-Frequenzen γ_1 und δ_4 — wird auf Kohlrausch-Wittek⁸ verwiesen. Das Spektrum von p-F · $C_6H_4 \cdot Cl$ wurde von Tintea¹¹ mitgeteilt. Über die durch Isotopie und Fermi-Resonanz entstandene Anomalie in $Cl_2C_6H_4$ (3 Linien um 1090 statt nur einer) wurde schon in Ziffer 7 gesprochen. Schließlich sei neuerlich darauf verwiesen, daß die in $C_6H_4X_2$ (D_{2h}) verbotenen Schwingungen auch bei unsymmetrischer Substitution

¹¹ H. Tintea, Bull. Soz. Roum. Phys. 43, 43 (1942).

 $(Y \cdot C_6H_4 \cdot X, C_{2v})$ im allgemeinen nicht oder nur sehr wenig Raman-, aktiv werden; von den dabei totalsymmetrisch werdenden Formen ω_{11} , δ_5 , ω_3 wird nur ω_3 deutlich beobachtbar. Ungesättigtheit der Substituenten — z. B. $X = NO_2$, CO, u. a. m. — wirkt sich auf die hohen Frequenzen δ_2 , ω_5 , ω_6 , $\omega_{7,8}$ häufig intensitätverstärkend aus.

10. Die e,e'-Regel.¹² Bekanntlich tritt von den beiden mit e,e' bzw. mit ω_4 , ω_3 bezeichneten Linien des p-Derivates $X \cdot C_6H_4 \cdot Y$ die eine frequenzgleich im Monoderivat $X \cdot C_6H_5$, die andere in $Y \cdot C_6H_5$ auf.

Abb. 3. Der spektrale Übergang C_6H_5 . $Cl \rightarrow p-X$. $C_6H_4Cl \rightarrow C_6H_4Cl$ -Radikal.

Daraus folgt — etwa am Beispiel der Abb. 3 geschildert — für X · C₆H₄ · Cl einerseits die Konstanz der Linie 1090 (vgl. Zeile 11 in Tabelle 2), anderseits eine Abhängigkeit der zweiten Linie von X, die für alle Y gleichartig sein muß (vgl. Spalte 11 von Tabelle 2 mit den anderen Spalten). An der Zusammenstellung von Zahlenwerten für ω_4 und ω_3 in Tabelle 2 läßt sich diese Frequenzbeziehung für ein größeres Beobachtungsmaterial überblicken. Beispiel: In Chloranilin ist $\omega_4 = 1090$ (1. Spalte, 11. Zeile) und $\omega_3 = 1279$ (1. Zeile, 11. Spalte).

Die Erfordernisse des spektralen Überganges (Abb. 3) reichen nicht

¹² K. W. F. Kohlrausch, Physik. Z. 37, 58 (1936).

hin, diese Gesetzmäßigkeit zu begründen; von ihnen wird ja nur verlangt, daß auf dem Weg $\omega_3 \rightarrow \omega_4$ bzw. $\omega_6 \rightarrow \omega_3$ der durch die punktierten Verbindungslinien abgegrenzte Frequenzraum I bzw. II nicht verlassen werden darf:

Sowie aber entsprechend dem experimentellen Befund (Ziffer 8) zusätzlich verlangt wird, daß im symmetrisch substituierten para-Derivat die nun verschiedenrassigen Schwingungen ω_4 und ω_3 nahezu oder völlig frequenzgleich werden sollen, dann läßt sich diese Forderung ohne Verletzung des *Rayleigh*schen Satzes *nur* durch Konstanthalten der einen Frequenz erfüllen. Dies führt zu einem Übergang nach Art des mit ausgezogenen Linien angedeuteten und zieht, da jedes unsymmetrische p-Derivat $X \cdot C_6H_4 \cdot Y$ in den spektralen Übergang sowohl von $C_6H_5 \cdot Y$ nach $C_6H_4 \cdot Y$ als von $C_6H_5 \cdot X$ nach $C_6H_4 \cdot X$ eingeschaltet werden kann, die "*e*,*e*'-Regel" nach sich.

Frägt man weiter, wie wohl die Schwingungsformen beschaffen sein mögen, die diesem Sachverhalt zugrunde liegen, so läßt sich eine eindeutige Antwort ohne die kaum ausführbare Durchrechnung des Schwin-

y x	NH_2	$CO.OC_2H_5$	CO.CH ₃	ОН	OCH3	F
NH ₂	1264(9)	1270(12)	1275(6)	1263(3)	1268(3)	1265(1/2)
$\rm CO \cdot OC_2H_5 \ldots$	1270(12)	1291(8)		1273(12)	1274(9)	
$CO \cdot CH_3 \dots \dots$	1275(6)			1272(7)	1268(8)	·
ОН	1263(3)	1273(12)	1272(7)	1257(6)	1262(5)	1257(7)
OCH ₃	1241(2)	1253(10)	1252(8)	1262(5)	1266(4)	1248(5)
F	1218(0)			1219(1)	1220(0)	[1220]
CH ₃	1216(7)	1208(6)	1210(4)	1215(6)	1210(6)	1211(6)
$CO \cdot Cl \dots$	·				1211(8)	1202(10)
CN		—		1197(3)		·
$NO_2 \dots \dots$	—	1105(8)		1108(12)	1109(12)	1110(18)
CI	1090(9)	1091(10)	1093(5)	1091(8)	1091(9)	1091(9)
Br	1068(6)	1068(10)	1068(8)	1064(8)	1071(8)	1064(6)
J	1067	1052(7)	. —		1058(3)	$1047(3)^{\circ}$

Tabelle 2. ω_4 und ω_3 in p-X · C₆H₄ · Y; links vom

gungsproblems für den unsymmetrischen Fall¹³ nicht geben. Die Symmetrieverhältnisse (Tabelle 1) allein schreiben ja nur Symmetrie vor zu σ_x für ω_3 und ω_4 im System C_{2v} , sowie im System D_{2n} zusätzlich Symmetrie zu σ_y für ω_4 . Antisymmetrie zu σ_y für ω_3 . Da bleibt für die Bewegungs-

Abb. 4. Mögliche Schwingungsformen zur Erklärung des Frequenzganges von ω_4 und ω_3 .

möglichkeiten insbesondere der nicht auf der Achse C_y liegenden Ringatome C₂, C₃, C₅, C₆ noch ein weiter Spielraum. — Mit Rücksicht aber ¹³ Das einfache Valenzkraftmodell liefert aber, wie bereits erwähnt, nicht einmal für den symmetrischen Fall den empirischen Befund: $\omega_3 \simeq \omega_4$.

CH ₃	CO.CI	CN	NO ₂	Cl	Br	J
1272(3)				1279(5)	1273(2)	1283(2)
1274(8)	— .		1274(3)	1272(8)	1270(10)	1270(7)
1266(5)			·	1261(7)	1262(4)	
1254(3)			1291(9)	1255(3)	1252(3)	
1246(2)	1262(5)	1255(2)	1257(13)	1244(4)	1244(5)	1241(2)
1221(6)	1234(3)		1225(3)	1230(3)	1226(4)	1222(3)
1204(8)	1201(12)		1208(3)	1208(7)	1209(5)	1210(3)
1201(12)	1202(7)	1194(4)		1201(9)	1201(10)	
1194(4)	-		1186(5)	1192(5)	1179(3)	
1108(6)	ar-1,000	1106(8)	$1106(^{1}/_{2})$	1108(8)	1107(10)	
1090(10)	1090(10)	1086(6)	1097(2)	1097(11)	1090(1 2)	1086(7)
1069(7)	1064(12)	1064(2)	1071(8)	1071(8)	1066(12)	1059(2)
1059(4)	· `		—	1052(5)	1045(4)	1045(8)

symm. Derivat X = Y liegt ω_4 ; rechts ω_3 .

darauf, daß eine Anzahl von Gründen dafür sprechen, den Frequenzen ω_4 bzw. ω_3 des *Monoderivates* eine 2,4,6- bzw. 1,3,5-Schwingung zuzuordnen, kann vielleicht der in Abb. 4 gemachte Vorschlag als vorläufige Antwort auf die gestellte Frage hingenommen werden. Die Formen sind schematisiert und ohne Rücksicht auf den Schwerpunktssatz gezeichnet.

Beim Übergang zum Radikal $C_6H_4 \cdot Cl$ mündet ω_4 (vgl. Abb. 3) in der 2,4,6-Schwingung $\omega_4 = 1000$, während ω_3 ungeändert bleibt; beim Übergang zum Stammkörper $C_6H_5 \cdot Cl$ bleibt dagegen der Frequenzwert von ω_4 ungeändert, während ω_3 sich allmählich in ω_6 verwandeln muß. — Faßt man etwa $F \cdot C_6H_4 \cdot Cl$ als substituiertes Fluorbenzol der Reihe $X \cdot C_6H_4 \cdot F$ auf, dann ist nur zu berücksichtigen, daß nun im Stammkörper und Radikal die Ringatome von F aus numeriert werden, so daß zur 2,4,6-Schwingung wird, was in Abb. 3 und 4 als 1,3,5-Schwingung benannt wurde, und umgekehrt.

Wenn nun, etwa so wie in Abb. 4 angedeutet, die Schwingungsformen des Monoderivates maßgeblich sind für die Formen und Frequenzhöhen von ω_4 und ω_3 in X · C₆H₄ · Y, dann ist Ähnliches auch für die Deformation des Polarisierbarkeits-Ellipsoides, also für Polarisationszustand und Intensität zu erwarten. Die Kontrolle durch das Experiment hat hier allerdings wesentlich verminderte Schärfe.

Für ρ von ω_3 im Monobenzol $C_6H_5 \cdot Y$ liegen die folgenden brauchbaren Werte vor:

$X = NH_2$	OCH_3	\mathbf{F}	Cl	\mathbf{Br}	. J .	im Mittel
$\omega_3 = 1277$	1247	1218	1083	1071	1060	
arrho=0,16	0,09	0,15	0,10	0,15	(0,35)	$\bar{p} = 0,14$

x	У	ω4	Q4	J4	ω	Q3	\mathbf{J}_{3}	r	r ₂
NH.	CH.	1216	0.10	52	1072	0.20	42	1.24	
ОĤ	ĊH.	1215	0,09	65	1254	0,07	34	1.91	
C1	CH.	1090	0,09	104	1208	0,09	41	2.54	
$\dot{B}r$	ĆH,	1069	0,08	111	1209	0,09	68	1,64	
J	CH_3	1059	0,13	72	1210	0,11	69	1,04	
NH ₂	OCH ₃	1241	0,21	27	1268	0,19	41	0,66	0,78
CH_3	OCH ₃	1210	0,08	41	1246	0,10	26	1,58	
C1	OCH ₃	1091	0,09	139	1244	0,14	32	4,35	4,00
\mathbf{Br}	OCH ₃	1071	0,14	70	1244	0,13	29	2,42	2,60
J	OCH ₃	1058	0,19	41	1241	0,20	24	1,70	1,65
NH_2	Cl	1090	0,11	67	1279	0,23	25	2,68	3,15
\mathbf{Br}	Cl	1071	0,16	54	1090	0,12	95	0,57	0,64
M	ittel:	$\overline{ec{arepsilon}_4}=0,12$			$\bar{\varrho}_3 = 0,14$				

Tabelle 3. ϱ - und *J*-Werte für ω_3 und ω_4 in p-X · C₆H₄ · Y.

Da ϱ offensichtlich unabhängig von X ist, ist im para-Derivat sowohl für ω_4 als für ω_3 der gleiche ϱ -Wert zu erwarten, und zwar im Mittel 0,14. Verwendbare Messungen liegen vor für 12 Beispiele; die Zahlenwerte für ω , $\varrho = i_{\sigma}/i_{\pi}$, $\mathbf{J} = i_{\pi} + i_{\sigma}$ sind in Tabelle 3 vereinigt. Man sieht aus ihr, daß in der Tat $\varrho_3 = \varrho_4$ und im Mittel $\bar{\varrho} = 0.13$ ist.

Zur Prüfung der erwarteten Intensitätsverwandtschaft sei zunächst gleichfalls vom Befund am Monobenzol ausgegangen. Um die Verschiedenheit der Expositionsbedingungen wenigstens einigermaßen auszugleichen, werden die Intensitäten aller Linien eines Spektrums bezogen auf I = 50 für die Linie $\omega_2 \sim 620$. Man erhält dann bei Halogen-Substitution folgende Gegenüberstellung:

		$\nabla Y = F$	C1	\mathbf{Br}	\mathbf{J}
1.	Halogenbenzol	$I(\omega_3) = 64$	114	75	36
2.	p-Halogentoluol	$\mathrm{I}\left(\omega_{4} ight)=58$.	140	126	88
3.	p-Halogenanisol	$I(\omega_4) = ?$	129	103	79
4.	p-Halogentoluol	$I(\omega_3) = 58$	56	78	84
5.	p-Halogenanisol	$\mathrm{I}~(\omega_3)=73$	30	43	46

Der Gang von I (ω_3) in Halogenbenzol Nr. 1 findet sich somit gleichartig im Y-abhängigen ω_4 von Nr. 2 und 3, fehlt aber im Y-unabhängigen ω_3 in den Zeilen 4 und 5. Dieser Intensitätsgang ist übrigens insofern ein charakteristisches Merkmal der Schwingformen, als er sich deutlich vom üblichen durch den Resonanznenner bestimmten Intensitätsgang einer C-Halogen-Valenzschwingung, wie sie z. B. auch in ω_{11} des Monound ω_{13} des para-Benzols zum Ausdruck kommt, unterscheidet:

		Y = F	Cl	\mathbf{Br}	1
6.	Halogenbenzol	$I(\omega_{11}) = 66$	124	295	[640]
7.	Halogentoluol	$I(\omega_{13}) = 86$	136	302	[296]
8.	Halogenanisol	$I(\omega_{13}) = 46$	69	202	387

Eine zahlenmäßig merklich bessere Übereinstimmung zwischen Erwartung und Befund, betreffend die Intensität, erhält man auf folgendem Wege: In Tabelle 3 ist unter r_1 das der Beobachtung entnommene Intensitätsverhältnis I $(\omega_4)/I$ (ω_3) angegeben. Durch passende Kombination je zweier solcher substituierter Toluole gefundenen r_1 -Werte lassen sich die Intensitätsverhältnisse r_2 für die restlichen Substanzen berechnen und mit dem Befund r_1 vergleichen. Man erhält etwa $r_2 = I$ (1071)/I(1090) in Br · C₆H₄ · Cl aus r_1 (Bromtoluol)/ r_1 (Chlortoluol). — Die so erzielte Übereinstimmung zwischen r_1 und r_2 ist völlig ausreichend, um neuerlich die Tragfähigkeit des Grundgedankens darzutun: Die durch ω , ϱ , J gemessenen Eigenschaften jeder der beiden Linien ω_4 und ω_3 in X · C₆H₄ · Y sind durch Schwingungsformen bestimmt, von denen die eine nur von X, die andere nur von Y abhängt; die jeweils leichtere Masse reguliert die Lage der höheren Frequenz ω_3 , die schwerere jene von ω_4 . So daß ω_4 von X abhängt, solange m (X) > m (Y) ist; andernfalls von Y.

Anhang.

1. Toluidin $H_3C \cdot C_6H_4 \cdot NH_2$. Aufnahmen: A 322, m. F., t = 81; A 323, m. F. C., t = 62. Ugd. s., Sp. m., n = 46.

 $\Delta v = 334 \ (4) \ (k, \pm e); \ 410 \ (2) \ (e); \ 446 \ (0) \ (e^?); \ 464 \ (4) \ (k, e); \ 507 \ (0) \ (e^?); \ 600 \ (00) \ (e^?); \ 644 \ (6) \ (k, f, e); \ 698 \ (0) \ (k, e); \ 740 \ (1) \ (e); \ 817 \ (3 \ b) \ (k, e); \ 844 \ (12 \ b) \ (k, i, f, e); \ 993 \ (0) \ (k^?, e^?); \ 1014 \ (0) \ (e); \ 1179 \ (6) \ (k, e); \ 1216 \ (7) \ (k, i, e); \ 1244 \ (^1_2) \ (e?); \ 1272 \ (3) \ (k, e); \ 1292 \ (1) \ (k, e); \ 1324 \ (1) \ (k, e^?); \ 1378 \ (7) \ (k, i, e); \ 1452 \ (^1_2) \ (e); \ 1594 \ (1) \ (k, e); \ 1618 \ (10 \ b) \ (k, g, f, e); \ 2863 \ (4) \ (k); \ 2920 \ (5) \ (k); \ 2972 \ (3) \ (k); \ 3018 \ (5) \ (k); \ 3032 \ (6) \ (k, i); \ 3054 \ (7) \ (k, i).$

Gegenüber der früheren mit geringer Dispersion und nur m. F. erhaltenen Aufnahme sind als gesicherte Linien neu: 698 (0); 1594 (1), 2863 (4), 2972 (3), 3032 (6).

2. Kresol $H_3C \cdot C_6H_4 \cdot OH$. A 232, m. F., t = 98; A 233, m. F. C., t = 57. Ugd. s., Sp. m., n = 57.

 $\Delta \nu = 338 \ (6 \ b); \ 407 \ (^{1}/_{2}) \ (e \ ?); \ 464 \ (6) \ (k, \pm e); \ 508 \ (^{1}/_{2}) \ (k, e); \ 644 \ (7) \\ (k, f, \pm e); \ 702 \ (2) \ (k, e); \ 823 \ (5) \ (k, e); \ 844 \ (12) \ (k, i, f, \pm e); \ 1018 \ (^{1}/_{2}) \ (k, e); \\ 1118 \ (^{1}/_{2}) \ (k, e); \ 1172 \ (4) \ (k, e); \ 1215 \ (6) \ (k, i, e); \ 1254 \ (3) \ (k, f, e); \ 1298 \ (1) \ (k, e); \\ 1379 \ (5) \ (k, i, e); \ 1596 \ (4) \ (k, e); \ 1614 \ (6) \ (k, e); \ 2734 \ (^{1}/_{2}) \ (k); \ 2865 \ (3) \ (k); \\ 2922 \ (5 \ b) \ (k, i); \ 3012 \ (5) \ (k, i); \ 3038 \ (4) \ (k, i); \ 3060 \ (7) \ (k, i).$

Neu: 1118 (1/2), Aufspaltungen 1596 (4) + 1614 (6), 3038 (4) + 3060 (7). 3. *Fluortoluol* $H_3C \cdot C_6H_4 \cdot F$. A 210 a, m. F., t = 90; Aufnahme wegen zu geringer Stoffmenge nicht ganz befriedigend:

 $\Delta \nu = 313 \ (^{1}_{2}), \ 338 \ (6), \ 453 \ (6), \ 503 \ (00), \ 636 \ (5), \ 693 \ (0), \ 733 \ (00), \ 824 \ (7), \ 841 \ (7), \ 1001 \ (00 \ ?), \ 1157 \ (3), \ 1211 \ (6), \ 1221 \ (6), \ 1297 \ (^{1}_{2}), \ 1382 \ (2), \ 1453 \ (0), \ 1599 \ (3), \ 1610 \ (3), \ 2872 \ (3), \ 2926 \ (3), \ 3048 \ (2), \ 3073 \ (9).$

Neu: 313 $\binom{1}{2}$ und Aufspaltungen 1211 (6) + 1221 (6), 1599 (3) + 1610 (3). 4. Xylol H₃C · C₆H₄ · CH₃. A 220, m. F., t = 27; A 221, m. F. C., t = 48; Ugd. s., Sp. mst., n = 48.

 $\Delta \nu = 310 \ (5 \ b) \ (k, \ \pm e); \ 383 \ (^{1}_{2}) \ (e); \ 457 \ (7) \ (k, \ f, \ \pm e); \ 643 \ (5) \ (k, e); \\ 698 \ (1) \ (k, \ e); \ 809 \ (4) \ (k, \ e); \ 828 \ (10) \ (k, \ i, \ g, \ f, \ e); \ 999 \ (1) \ (k, \ e); \ 1182 \ (4) \ (k, \ e); \\ 1204 \ (8) \ (k, \ i, \ g, \ f, \ e); \ 1308 \ (2) \ (k, \ e); \ 1376 \ (6) \ (k, \ e); \ 1444 \ (^{1}_{2}) \ (k, \ e); \ 1576 \ (1) \\ (k, \ e); \ 1616 \ (6) \ (k, \ f, \ e); \ 2732 \ (2) \ (k); \ 2861 \ (3 \ b) \ (k); \ 2919 \ (7) \ (k, \ i); \ 3008 \ (4) \ (k); \\ 3028 \ (4) \ (k); \ 3053 \ (6) \ (k, \ i).$

Neu: Aufspaltung 3008 (4) + 3028 (4).

5. Chlortoluol Cl · C₆H₄ · CH₃. A 201, m. F., t = 57; A 202, m. F. C., t = 37. Ugd. s., Sp. mst., n = 53.

 $\Delta \nu = 304 \ (6) \ (k, i, f, \pm e); \ 377 \ (9) \ (k, i, g, f, \pm e); \ 634 \ (6) \ (k, f, \pm e); \ 692 \\ (1) \ (e); \ 797 \ (10) \ (k, i, f, \pm e); \ 819 \ (2) \ (k, i, e); \ 1090 \ (10) \ (k, i, f, e); \ 1175 \ (2) \\ (k, e); \ 1208 \ (7) \ (k, i, f, e); \ 1298 \ (2) \ (k, e); \ 1377 \ (5) \ (k, i, e); \ 1424 \ (1) \ (e^?); \ 1452 \\ (1) \ (e); \ 1574 \ (^1/_2) \ (k, e); \ 1596 \ (8) \ (k, f, e); \ 2736 \ (1) \ (k); \ 2873 \ (^1/_2) \ (e); \ 2922 \ (6) \\ (k, i); \ 3027 \ (3) \ (k); \ 3047 \ (4) \ (k); \ 3062 \ (8) \ (k, i).$

Neu: Aufspaltungen 1574 $(^{1}/_{2})$ + 1596 (8) und 3047 (4) + 3062 (8). 6. *Bromtoluol* Br · C₆H₄ · CH₃. A 208, m. F., t = 74; A 210, m. F. C., t = 47. Ugd. s., Sp. m., n = 42.

 $\Delta v = 291 \ (8) \ (\bar{k}, i, f, \pm e); \ 364 \ (1) \ (e); \ 462 \ (0) \ (e^{2}); \ 590 \ (0) \ (e); \ 632 \ (4) \ (e); \ 702 \ (^{1}_{2}) \ (e); \ 792 \ (8) \ (k, g, f, e); \ 815 \ (2) \ (k, e); \ 840 \ (00) \ (e); \ 1012 \ (2) \ (k, e); \ 1069 \ (7) \ (k, i, f, e); \ 1176 \ (1) \ (k, e); \ 1209 \ (5) \ (k, i, e); \ 1300 \ (^{1}_{2}) \ (k, e); \ 1376 \ (4) \ (k, e); \ 1440 \ (0) \ (e); \ 1588 \ (7) \ (k, g, f, e); \ 2733 \ (^{1}_{2}) \ (k); \ 2874 \ (^{1}_{2}) \ (k); \ 2920 \ (4) \ (k, i); \ 2976 \ (2) \ (k); \ 3024 \ (3) \ (k); \ 3042 \ (4) \ (k); \ 3059 \ (6) \ (k).$

Neu: Aufspaltung 3042 (4) + 3059 (6).

7. Chlorphenol Cl·C₆H₄·OH. A 224, m. F., t = 64; A 225, m. F. C., t = 47. Ugd. ms., Sp. mst.; n = 38.

Neu: 501 (1), 697 (1), 1284 $\binom{1}{2}$; 1492 (2), Aufspaltungen 1588 (5) + + 1604 (3) und 3060 (5 b) + 3069 (7).

8. Dichlorbenzol Cl \cdot C_6H_4 \cdot Cl. A 287, m. F., t = 72; Ugd. ms., Sp. st.; n = 41.

 $\Delta v = 299 \ (8) \ (\pm e); \ 327 \ (5) \ (\pm e); \ 331 \ (12) \ (g, \pm f, \pm e); \ 351 \ (3) \ (\pm e); \ 384 \ (0) \ (e); \ 480 \ (0) \ (e); \ 598 \ (0) \ (e); \ 627 \ (8) \ (\pm e); \ 744 \ (3) \ + \ 747 \ (12) \ (f, e); \ 811 \ (^{1}_{2}) \ (e); \ 1069 \ (8b) \ (f, e); \ 1086 \ (8) \ (e); \ 1105 \ (12) \ (f, e); \ 1169 \ (5s) \ (e); \ 1223 \ (^{1}_{2}) \ (e); \ 1291 \ (3s) \ (e); \ 1379 \ (1) \ (e); \ 1574 \ (12) \ (f, e); \ 1632 \ (^{1}_{2}) \ (e); \ 3072 \ (1) \ (e). \ (e); \ 1632 \ (^{1}_{2}) \ (e); \ 3072 \ (1) \ (e). \ (e); \ 1632 \ (^{1}_{2}) \ (e); \ 3072 \ (1) \ (e). \ (e); \ (e$

Neu: 351 (3); Aufspaltungen 327 (5) + 331 (12); 744 (3) + 747 (12). 9. Chlorbrombenzol Cl \cdot C₆H₄ \cdot Br. A 291, m. F., t = 71; Ugd. ms., Sp. mst., n = 24.

 $\Delta v = 261 \ (12) \ (g, \ f, \ \pm e); \ 284 \ (5 \ d) \ (f, \ \pm e); \ 333 \ (2) \ (\pm e); \ 396 \ (00) \ (e); \ 480 \ (00) \ (e); \ 624 \ (5) \ (e); \ 698 \ (00) \ (e); \ 730 \ (10) \ (f, \ e); \ 820 \ (0) \ (e); \ 1071 \ (8) \ (f, \ e); \ 1090 \ (12) \ (f, \ e); \ 1171 \ (5) \ (e); \ 1299 \ (^1/_2) \ (e); \ 1375 \ (0) \ (e); \ 1557 \ (5) \ (e); \ 1570 \ (5) \ (e); \ 1588 \ (1) \ (e).$

Neu: 820 (0); 1299 (1/2), Aufspaltung 1557 (5) + 1570 (5).

10. Dibrombenzol Br $C_6H_4 \cdot Br$. A 288a, m. F., t = 70; $\vartheta \sim 100^\circ$; Ugd. m., Sp. mst.; n = 18.

 $\Delta \nu = 215 (10) (f, \pm e); 272 (4 d) (\pm e); 310 (1) (e); 491 (00) (e); 624 (4) (e); 709 (10) (f, e); 809 (00) (e); 1066 (12) (f, e); 1172 (5) (e); 1290 (1/2) (e); 1368 (1 b) (e); 1565 (4 d) (e); 1600 (0) (e).$

Keine neuen Linien.

11. Hydrochinon-monomethyläther HO \cdot C₆H₄ \cdot OCH₃. A 311, m. F., t = 81; A 312, m. F. C., t = 55. Ugd. m., Sp. mst.; n = 42.

 $\Delta v = 251 \ (0) \ (e); \ 377 \ (4) \ (\pm e); \ 393 \ (2) \ (e); \ 437 \ (2) \ (e); \ 532 \ (0) \ (e); \ 642 \ (8) \ (k, f, e); \ 708 \ (4) \ (k, e); \ 798 \ (1) \ (k, e); \ 832 \ (10 \ b) \ (k, f, e); \ 850 \ (10 \ b) \ (k, i, e); \ 1040 \ (^1/_2) \ (k, e); \ 1166 \ (6) \ (k, f, e); \ 1182 \ (6) \ (k, f, e); \ 1262 \ (5 \ b) \ (k, e); \ 1296 \ (7 \ b) \ (k, e); \ 1450 \ (^1/_2) \ (k, e); \ 1597 \ (5) \ (k, e); \ 1618 \ (7) \ (k, f, e); \ 2837 \ (2) \ (k); \ 2948 \ (0 \ ?) \ (k); \ 3009 \ (0) \ (k); \ 3067 \ (3 \ b) \ (k, e).$

Neu: 798 (1); Aufspaltungen: 1166 (6) + 1182 (6); 1597 (5) + 1618 (7). 12. Fluoranisol $F \cdot C_6H_4 \cdot OCH_3$. A 205, m. F., t = 60; Ugd. s., Sp. m.; n = 21.

 $\Delta \nu = 240 \ (^{1}/_{2}); \ 375 \ (5 \ b); \ 427 \ (4); \ 526 \ (^{1}/_{2}); \ 634 \ (4); \ 699 \ (2); \ 798 \ (1); \\ 831 \ (10); \ 846 \ (3); \ 1034 \ (^{1}/_{2}); \ 1097 \ (^{1}/_{2}) ?; \ 1152 \ (4); \ 1180 \ (3); \ 1248 \ (5); \ 1294 \ (4); \\ 1453 \ (2); \ 1600 \ (4); \ 1611 \ (1).$

13. Methylanisol $H_3C \cdot C_6H_4 \cdot OCH_3$. A 214, m. F., t = 72; A 222, m. F. C., t = $48^{1/2}$. Ugd. s., Sp. st., n = 47.

 $\Delta v = 236 (1) (e); 341 (4 b) (k, e); 419 (5) (k, e); 519 (1) (e); 638 (5) (k, f, e);$ 704 (2) (k, e); 818 (9) (k, i, g, f, e); 835 (4) (k, e); 1011 (¹/₂) (e?); 1039 (1) (e);1095 (1) (e); 1180 (6 b, dopp.?) (k, e); 1210 (6) (k, i, e); 1246 (2) (k, e); 1295(3) (k, i, e); 1378 (5) (k, i, e); 1455 (2) (k, e); 1498 (0?) (e); 1584 (2) (k, e);1611 (7) (k, i, e); 2738 (0) (k); 2921 (4) (k); 2945 (4) (k?); 3011 (2) (k); 3062(4 b) (k); 3071 (7 b) (k).

Neu: Aufspaltung 3062 $(4 \ b) + 3071 \ (b)$.

14. Chloranisol Cl \cdot C₆H₄ \cdot OCH₃. A 206, m. F., t = 54 (¹/₂); A 207, m. F. C., t = 39; Ugd. m., Sp. st.; n = 66.

 $\Delta v = 143$ (4) (e?); 212 (3) ($\pm e$); 309 (5) ($k, \pm e$); 335 (5) ($k, i, \pm e$); 366 (6) ($\pm e$); 418 (0?) (e); 498 (1) (k, e); 625 (6) (k, e); 636 (6) (k, e); 698 (4)

 $(k, e); 797 (12) (k, i, f, \pm e) 829 (1) (k, e); 1006 (3) (k, e); 1034 (1) (k, e); 1091 (9) (k, i, e); 1100 (1/2) (k, e); 1168 (4) (k, i, e); 1181 (4) (k, i, e); 1244 (4) (k, e); 1292 (3) (k, e); 1404 (1/2) (k, e); 1440 (3) (k, e); 1458 (3) (k, f, e); 1492 (1) (k, e); 1580 (5) (k, e); 1594 (8) (k, e); 2836 (5) (k); 2937 (2) (k, i); 3010 (1) (k); 3064 (7 b) (k); 3075 (7 b) (k).$

Neu: Aufspaltung 3064 (7 b) + 3075 (7 b).

15. Bromanisol Br \cdot C₆H₄ \cdot OCH₃. A 203, m. F., t = 57; A 204, m. F. C., t = 41; Ugd. m., Sp. mst.; n = 67.

 $\Delta \nu = 144 \ (5) \ (e^2); \ 187 \ (3) \ (\pm e); \ 263 \ (10) \ (k, \ i, \ f, \ \pm e); \ 323 \ (4) \ (k, \ \pm e); \ 413 \ (0) \ (e^2); \ 475 \ (1) \ (e); \ 506 \ (1) \ (k, \ e); \ 598 \ (4) \ (k, \ e); \ 628 \ (7) \ (k, \ i, \ f, \ \pm e); \ 695 \ (1) \ (k, \ e); \ 789 \ (10) \ (k, \ i, \ f, \ e); \ 598 \ (4) \ (k, \ e); \ 628 \ (7) \ (k, \ i, \ f, \ \pm e); \ 695 \ (1) \ (k, \ e); \ 789 \ (10) \ (k, \ i, \ f, \ e); \ 825 \ (^1/_2) \ (e); \ 1000 \ (4) \ (k, \ e); \ 1030 \ (4) \ (k, \ e); \ 1030 \ (4) \ (k, \ e); \ 1030 \ (4) \ (k, \ e); \ 1031 \ (4) \ (k); \ 3069 \ (7) \ (k).$

Neu: 1100 (1/2) und die Aufspaltungen: 1168 (6) + 1179 (2), 1287 (3) + + 1294 (3), 1438 (3) + 1452 (3), 1575 (6) + 1589 (6); 3054 (4 b) + 3069 (7 b).